Julian Bellavita
Computer Science PhD Student at Cornell
Email: jbellavita@cs.cornell.edu
I am a Computer Science PhD student at Cornell advised by Dr. Giulia Guidi. I have a BA in CS from UC Berkeley, and I previously worked at Lawrence Berkeley National Laboratory.
I work on implementing fast distributed sparse matrix multiplication algorithms on heterogeneous HPC systems, and on using sparse matrix multiplication to parallelize applications in computational biology and elsewhere.
I am supported by a Department of Energy Computational Science Graduate Fellowship.
You can email me at jbellavita@cs.cornell.edu
![Bellavita_Julian_CSGF_[2024] (5) (1).JPG](https://static.wixstatic.com/media/1f5764_7f10e732c0db4f429cf8528e10552e08~mv2.jpg/v1/fill/w_600,h_900,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Bellavita_Julian_CSGF_%5B2024%5D%20(5)%20(1)_JPG.jpg)
Publications
​Bellavita, J., Jacquelin, M., Ng, E. G., Bonachea, D., Corbino, J., & Hargrove, P. H. (2023, November). symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver. In Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis (pp. 1171-1184).
Castelló, A., Bellavita, J., Dinh, G., Ikarashi, Y., & Martínez, H. (2023). Tackling the Matrix Multiplication Micro-kernel Generation with Exo. IEEE/ACM International Symposium on Code Generation and Optimization (CGO) 2024.
J. Bellavita, C. Sim, K. Wu, A. Sim, S. Yoo, H. Ito, V. Garonne, E. Lancon, "Understanding Data Access Patterns for dCache System", 26th International Conference on Computing in High Energy & Nuclear Physics (CHEP2023), 2023.
Bellavita, J., Sim, A., Wu, K., Monga, I., Guok, C., Würthwein, F., & Davila, D. (2022, June). Studying Scientific Data Lifecycle in On-demand Distributed Storage Caches. In Fifth International Workshop on Systems and Network Telemetry and Analytics (pp. 43-50).
Education
Cornell University
PhD, Computer Science
2023-Present
University of California, Berkeley
B.A. Computer Science
2019-2023